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Abstract--Low frequency galn fluctuations of a SO GHs cryo-
genic HEMT amplifier have been measured with the input
of the amplifier connected to a 15 K load. EIYects of fluctua-
tions of other components of the test set-up were eliminated
by use of a power-power correlation technique. Strong cor-
relation between output power fluctuations of the amplifier
and drain current fluctuations of the transistors comprising

the amplifier are observed. The existence of these corre-
]at|ons introduces the possibility of regressing some of the
excess noise from the HEMT amplifier's output using the
measured drain currents.
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1 INTRODUCTION

Recently major advances have been made in the noise

performance and frequency range of ultra-low-noise cryo-

genic HEMT amplifiers [4]. One application which takes

full advantage of both the low noise and large bandwidth

of these amplifiers is radiometry in radio astronomy. High

sensitivity in such radiometers is achieved both from the

low noise temperatures and large instantaneous bandwidths

of the amplifiers. The large bandwidths employed in turn

require a very high degree of gain stability of the entire

amplifier chain comprising the radiometer. After integrat-

ing for time r the sensitivity achieved by a radiometer of
bandwidth Am, and noise temperature T is [3]

6T = T_/1/(r_v) + (_g/9) 2 (1)

where 8g/g is the mean magnitude of the fractional gain

fluctuation occuring during the integration interval. As

can be seen from the above relation, for a radiometer with

Av = 3 GHs and _" -- 1 second, fractional gain fluctua-

tions on the order of 6g/g _ 10 -S will substantially de-

grade radiometer performance. In practice most radiome-

ters employ some sort of Dicke switching [2] to circumvent

such variabilities. Practical considerations limit the rate

at which this switching can be performed making low fre-

quency gain stability an important issue in radiometer de-

sign. This work attempts not only to characterize the low

frequency gain stability of a cryogenic HEMT amplifier,

but also to develop the techniques required to perform such

measurements quickly and reliably, minimising systematic

errors introduced by the associated test equipment.

2 TECHNIQUE

The major obstacle in characterizing the stability of the

HEMT amplifiers is that the other components used in per-

forming the measurement typically have stabilities compa-

rable to or worse than the HEMT amplifier under test. The
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resultant measurements therefore reflect not only the vari-

ability of the parameters of the amplifier under test, but

also the variability of the components comprising the test

setup.

The approach used here makes no assumptions about the

stability or repeatability of the characteristics of most of

the components of the test setup, rather it merely requires

that the fluctuations inherent in two different sets of test

components be uncorrelated. The technique is based on

power-power correlations and is very similar to the opera-

tion of a Hanbury-Brown-Twiss radiometer [I]. A simpli-

fied description of this technique follows.

Assume that an amplifier under test is connected as

shown in Fig. I, with its input attached to a tempera-

ture stabilized load. Let the time dependent output power

of the HEMT amplifier, H(t), be given by

/t(0 = + (2)
< 6H(0 >- o, (3)

where both the effects of noise temperature fluctuation and

gain fluctuations of the HEMT amplifier are included in the

term 6H(t), H denotes the mean value of the output power

of the HEMT amplifier, and <:> denotes an average over

a time long compared to the time scale of the fluctuations

of interest. The output of the HEMT amplifier is then di-

vided, amplified and detected by two (nominally) identical

amplifier channels. The detected total power signals from

the two outputs are described by

PI(f) :/'/(t)Gl(t) = [H -[- 6H($)] [(_1"1 + 6Gl(_)] , (4)

p2(0 = HC0a2(0 = + 6H(0] + • (5)

Here 6GI(f) and 6G2(_) represent the time varying com-

ponents of the gains of room temperature amplifiers, and

G"_ and G---2are the mean gains of these amplifiers. (For

simplicity the room temperature amplifier chains are as-

sumed to have only gain fluctuations. This assumption is

not neccesary, the only crucial assumption is that the time

varying parameters of the two room temperature amplifier

chains be uncorrelated.) In order to extract the HEMT

characteristics the cross-correlation of PI(t) and P2(t) is

formed:

/ Pl(t) • P2(T -- t)df, (6)CorrCT )

/ ['H -}- 6H(')] [G -b _GI($)] "Corr(T)

[-H + dfH(T- ,)] _ + $G2(T - $)] dr.(7)



Next, Corr(T) is ensemble averaged, recalling that the means

of all the fluctuating components are defined as zero, and
that all cross terms of_G1, 6G2 and 6H vanish as a result

of their statistical independence. The only terms which

survive the averaging are

_2_2 + _2 </[SH(T - t)6H(t)]dt>,< Corr(T)

(g)
the second of which is proportional to the auto-correlation

function of the fluctuating component of the power out-

put of the HEMT amplifier which can be converted to •
power spectrum by a Fourier transform. The effects of

the variability of the parameters of the room temperature

components are eliminated to the degree to which they
are uncorrelated; the variability is manifest as additional
statistical noise on the measured correlation functions and

power spectra. Obtaining power spectra in this manner

only picks out components which are correlated in the two
data streams and can therefore be used to search for cor-

relations between any time varying parameters in the ra-
diometer.

Fig. 1 Simplified model of the radiometer used to ex-

plain the correlation technique.
3 APPARATUS AND DATA COLLECTION

The system used to make the measurements (Fig. 2) con-

sists of both cryogenic and room temperature components

[6]. The cryogenic components are two HEMT amplifiers,
an orthomode coupler and a temperature regulated load.

Each amplifer comes paired with a power supply which sets

the operating point of each of the four transistors by fixing

drain voltages and servoing the gate voltage to maintain

a constant drain current. These amplifiers [5] have a gain

of _30 dB from 25-35 GHz, and a mean noise tempera-

ture of _40 K when operated at a physical temperature
of 15 K. The cryogenic components are located inside a

vacuum-insulated dewar which is cooled by a mechanical

refrigerator. The inputs of the two HEMT amplifiers are
connected to the two single polarization ports of the or-

thomode transducer, and the dual polarization port is at-
tached to a temperature regulated unpolarised load. The

outputs of the two HEMT amplifiers are brought to a room
temperature port on the dewar by two sections of stainleu

steel waveguide where they are connected to the room tem-

perature amplifiers through isolators.

Fig. 2 Detailed block diagram of the radiometer em-
ployed in these measurements. The items enclosed in the

dashed box were cooled to 15K by a closed cycle helium
refigerator.

The room temperature components consists of two nomi-

nally identical channels, designated A and B. Each channel

consists of a broadband amplifier and a frequency trildexer

constructed from circulators and waveguide bsadpass

ters. The different frequency bands are designated I, 2

and 3, and have nominal pass bands of 26-29, 29-32 and
32-35 GHz, respectively. A diode detector is located at

the output of each band, and its output is fed into the
data collection system where it is sampled at 64 Hs.

The data collection system has six channels designated

AI, A2, A3, BI, B2, and B3, with the number correspond-
ing to the frequency band and the letter indicating the
radiometer channel.

4 MEASUREMENTS AND RESULTS

The room temperature amplifier chains were connected

to the dewar output wavegnides in different configurations,
depending on the measurement being made.

,f.l lndeper_de_t Cha_els

The first configuration employed was the same as shown
in Fig. 2, in which the two radiometer channels are in-

dependent of one another apart from the orthomode cou-

pler and the load. The spectral noise density measured

at the output of all six detectors is very similar, Fig. 3

shows a representative spectrum obtained from the output
of detector A1. The signals _t the outputs of the detec-

tors were processed as follows to produce spectra: first the

time streams of data from the diode detectors represent-
ing the instantaneous output power of the radiometer were

divided into blocks consisting of 1024 consecutive samples.
After removal of the mean of each block, the block's auto-
correlation function was formed. These auto-correlation

functions were averaged, Fourier transformed and corrected

for the frequency response of tha data collection system,
yielding the power spectrum of the fluctuations of the out-

put power of the radiometer. Each spectrum is normal-

ized so that the mean vulue between 25 and 31.25 Hs (the
Nyqnist frequency) equals unity. This normalization com-

pensates for the different losses, gains, and responsivities

associated with the different channels and bands, and fa-

cilitates comparison of different spectra. The spectra from
all six dectectors are similar and indicate an excess of noise

at low frequencies, though from these data alone the source
of this excess is not certain.

Fig. 3 Spectral density of the power fluctuations of the
A1 channel of the radiometer obtained with the radiometer

configured as in Fig. 2.

In this configuration, one expects the six radiometer out-

puts to be uucorrelated, aside from temperature fluctua-

tious of the load. To test this prediction spectra are ob-

ruined by a procedure sinfilar to that described above, ex-

cept that rather than forming the auto-correlation of one

of the detector outputs, a cross-correiation between two

different outputs is employed. It should be noted that the

power spectra calculated this way are not positive definite;
in the situation where cross-correlations are formed, and

the correlated signs] in the two time streams is small com-

pared to the random noise, negative values can result. The

square-root of the magnitude of the power spectral density
(dimensions of K/_Hs) is plotted on the ordinate in the

following figures, and is displayed as negative if the value

of the calculated power spectrum is negative. The normal-

isation for these cross-correlations is determined by using
the appropriate combination of normalization constants de-

rived from the auto-correlation of the two individual chan-

nels involved. For all combinations which correlate one

output from the 'A' radiometer channel and one from the

'B' channel no significant correlations are observed, apart

from a slight upturn at very low frequency. The solid line
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in Fig. 4displaysoneof thesespectra,obtainedfromthe
cross-correlationof outputsA1andB1,typicalofall nine
'AxB' cross-correlations.These spectra set a limit on the

temperature stability of the load. Had there been signifi-
cant temperature fluctuations of the load they would have
been correlated for all combinations of outputs.

The dashed line in Fig. 4 shows a cross-correlation be-

tween frequency bands 1 and 2 within the 'A' radiome-

ter channel. Here very significant correlations are evident.
Similar spectra are obtained when cross-correlating any

combination of frequency bands within either radiometer
channel. The fact that all these spectra have similar shape

and amplitude indicates that the output power of each ra-

diometer channel is varying as a whole (i.e., equally and

coherently across the entire RF bandwidth of the ampli-

tier). Since the previous measurements precluded the pos-
sibility of variations in the emission from the load at this

level, these fluctuations must be inherent in the radiometer
itself.

Fig. 4 Spectral density of the power fluctuations ob-
tained from the cross-correlations AlxA2 ( dashed ) and

AlxB1 ( solid ) with the radiometer configured as in Fig.
2.

4._ HEMT Amplifier Mea.,urements

In order to directly observe the stability of a HEMT am-

pLifier, the radiometer was reconflgured as shown in Fig.

5, where the output power from the HEMT is divided and
then amplified by the two separate channels. The power

spectra of the individual detector outputs are nearly iden-
tical, and are typified by the spectrum presented in Fig.

3, which was obtained with the radiometer in the original

(indepedent channel) configuration. Fig. 6 shows the cross-
correlations between channels 'A' and 'B', for combinations

AlxB1, A2xB2 and A3xB3. These spectra represent the

output power of the HEMT amplifier, with very little con-

tamination from any of the other radiometer components.

Since all these plots are time-averaged cross-correlations
between the different room temperature channels, the ef-

fects of instabilities in the room temperature components

are averaged out. All six cross-correlations between differ*
ent channels and different frequency bands are very sim-

ilar, representative combinations A2xB1 and A3xB2 axe

shown in figure 7. The fact that these other combina-
tions are correlated and have nearly identical amplitudes

and shapes strongly suggests that whatever instabilities axe

causing these correlations occur uniformly across the entire
RF bandwidth of the HEMT amplifier. ( The fact that the

spectra in Fig. 6 all approach I in the high frequency limit
while those in Fig. 7 do not is a result of the inherent

statistical fluctuations in the power emitted by the load

[1] which are correlated only when the pa._bands of the

radiometer channels overlap. )

Fig. 5 The radiometer as configured to measure the

HEMT amplifier's characteristics.

Fig. 6 Spectral density of the power fluctuations ob-
tained from the cross-correlations between the same fre-

quency bands of the two radiometer channels, AlxB1, A2xB2
and A3xB3.

Fig. 7 Spectral density of the power fluctuations o]3-

talned from the cross-correlation between different frequency

bands of the two radiometer channels, A3xB2 and A2xB1.

.4.3 Gain-Drain Current Correlations
In the course of performing these measurements it was

noted that low frequency ( .05- 10Hz ) noise was present in
the drain current of the individual transistors comprising

the HEMT amplifier when the gate voltage was held con-

stant. ( The NRAO supplied bias circuitry was replaced
with fixed voltage sources for these measurements. ) The

spectra of this noise was found to be similar that of the

output power of the radiometer. The circuitry used to bias

the transistors was carefully checked, and the source of
these fluctuations was identified as the individual HEMT's

comprising the amplifier.

Having determined that these fluctuations originate as

wriability inherent in the cyogenlc transistors the ques-
tion arises as to whether the fluctuations are related to

fluctuations in the amplifier's output power. In order to
determine this, four of the data collection channels previ-

ously connected to detectors A2, B2, A3, and B3 were used
to monitor the drain currents of the four transistors in the

HEMT amplifier. Fig. 8 shows the spectrum of fluctua-
tions of the drain current of the input stage of the HEMT

amplifier, again normal_ed to unity between 25 and 31.25

Ha. The spectra of the drain current fluctuations of the
other transistors are similar in both character and magni-
tude. Cross correlations between the drain current time

streams showed that there were no correlations between

the drain current fluctuations of different transistors com-

prising the amplifier, consistent with the identification of
the source of these fluctuations as arising from within the

individual transistors.
To test for correlations between these fluctuations and

the output power of the HEMT, cross-correlations between
these drain currents and the detected power were obtained.

Two representative spectra are presented in Fig. 9. Very

significant correlations between the drain currents of each
transistor and the detected output power are observed the

magnitude of the correlation coefficient is ._.2 dB/mA, and

it has the sense that the gain increases as the drain currents
increase. The fact that the magnitude of the correlations is

roughly constant for the four different transistors, and that
the fluctuations of the drain current are uncorrelated from

transistor to transistor, indicates that the observed drain

current fl=ctua|ions are correlated to gain changes rather

than noise temperature changes. Had they been correlated

to noise temperature changes, one would expect the cor-
relations to be smaller for the transistors later in the am-

plifler chain, since the noise added by each successive gain

stage is a smaller fraction of the overall system noise tem-

perature. Similar results were obtained using the NRAO

supplied bias circuitry which maintains the drain current

and voltage of the individual transistors constant by ser-

voing the gate voltage. In this case correlations between

the gate voltages of the transistors and radiometer output

power were observed, but no improvement in the stabili_/

of the HEMT amplifier t_as achieved.



Fig. 8 Spectra] density of the drain current fluctuations

of the first stage of the HEMT amplifier obtained with the

gate and drain voltages held constant.

Fig. 9 Cross-correlations between output power of ra-

diometer channel A1 and the drain current of the input

transistor of the HEMT amplifier ( Alxldl ) and the drain

current of the final transistor of the HEMT amplifier (

Alxld4 ).

These measurements were repeated with the physics]

temperature of the amplifier at 12, 15 and 20 K, with no

effect on any of the observed spectra. It was noted, how-

ever, that the temperature of the body of the HEMT am-

pllfier varied 70 mK p-p coherently with the cydin K of the

mechanics] refrigerator. The frequency of this osci]/ation

is very stable at 1.2 Ha. The fact that no strong 1.2 Hs

line is observed in any of the obtained spectra ind/ca'_es

that the amplifier's parameters are nearly tempezatare Ln-

dependent. A final set of measurements were made with

the LEDs (light emitting diodes which illuminate the trlm-

sistors) switched off'. These data are presented in Fig. 10.

There is a small improvement in stability at frequencies
below _ I0 Hs when the LEDs are switched off.. This

improvement occurred immediately after the LEDs were

extinguished, and no further changes were observed during
the subsequent 12 hours.

Fig. I0 Spectra] density of power fluctuations as oh-

rained from the cross-correlations AlxB1 with the light-

emitting-diode which i]/uminates the HEMTs ON ( upper
) and OFF ( lower ).

5 SUMMARY AND CONCLUSIONS

Accurate measurements of the stability characteristics

of a 25-35 GHs HEMT amplifier have been obtained and

with the amplifier's input attached to a 15 K temperature-

regulated load. Measurements of the stability of the emis-

sion from the load indicate that temperature fluctuations

of the load have a negligible contribution to these spec-

tra, and the use of the power-power correction technique

has effectively eliminated _nsitivRy to fl'_ctu_tions in the

room temperature components. It appears that much of

the variability is characterised by the gain of the amplifier

shifting uniformly across its entire RF bandwidth, these

variations being accompanied by changes in the drain cur-

rents of the individual transistors comprb_g the amplifier.

The fact that these correlations exist raises the possibility

of using the measured drain currents to regress some of the

variabiUty out of the data stream. Preliminary malts have

shown that _ 30% of the excess low frequency fluctuations

can be removed using this technique.
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Fig. I. Simplified model of the radiometer used to explain

the correlation technique.

Fig. 2. Detailed block diagram of the radiometer employed in
these measurements. The items enclosed in the dashed box were

cooled to -15K by a closed cycle helium refigerator.

Fig. 3. Spectral density of the power fluctuations of the A1
channel of the radiometer obtained with the radiometer configured

as in Fig. 2.

Fig. 4. Spectral density of the power fluctuations obtained from
the cross-correlations AIxA2 ( dashed ) and AIxBI

( solid ) with the radiometer configured as in Fig. 2.

Fig. 5. The radiometer as configured to measure the HEMT

amplifier's characteristics.

Fig. 6. Spectral density of the power fluctuations obtained from
the cross-correlations between the same frequency bands of the

two radiometer channels, AIxBI, A2xB2 and A3xB3.

Fig. 7. Spectral density of the power fluctuations obtained from
the cross-correlation between different frequency bands of the

two radiometer channels, A3xB2 and A2xBI.

Fig. 8. Spectral density of the drain current fluctuations of
the first stage of the HEMT amplifier obtained with the gate and

drain voltages held constant.

Fig. 9. Cross-correlations between the output power of radiometer
channel A1 and the drain current of the input transistor of the

HEMT amplifier (AlxIdl) and the drain current of the final

transistor of the HEMT amplifier (AlxId4).

Fig. I0. Spectral density of power fluctuations as obtained from
the cross-correlations AIxBI with the light-emitting-diode which

illuminates the HEMTs ON ( upper ) and OFF ( lower ).
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